Insertion Sort

āœ… Insertion Sort Code O(nĀ²)

def insertion_sort(arr):
    n = len(arr)
    
    for i in range(1, n):
        key = arr[i]  # Store the value to be inserted
        j = i - 1
        
        # Shift elements of arr[0..i-1] that are greater than key
        while j >= 0 and arr[j] > key:
            arr[j + 1] = arr[j]
            j -= 1
        
        # Insert the stored value at the correct position
        arr[j + 1] = key
    
    return arr

šŸ“ Quick Review for Fast Recall

  • āœ… Comparison-based sorting algorithm
  • āœ… Stable: Does not change the relative order of elements with equal values
  • āœ… In-place: Uses O(1) extra space
  • āœ… Efficient for small or nearly sorted datasets
  • āœ… Not efficient for large datasets

ā³ Time Complexity & Number of Operations

  • āœ… Best Case (Already Sorted): O(n) ā†’ Only compares, no shifting
  • āœ… Worst Case (Reverse Sorted): O(nĀ²) ā†’ Each element inserted at the beginning
  • āœ… Average Case (Random Order): O(nĀ²) ā†’ Expected number of swaps = O(nĀ² / 4)
  • āœ… Total possible pairs in an array: n * (n ā€“ 1) / 2
  • āœ… Worst-case inversions (reverse sorted): n * (n ā€“ 1) / 2
  • āœ… Best-case inversions (already sorted): 0
  • āœ… Average-case inversions (random order): n * (n ā€“ 1) / 4

āš ļø Traps & Things to Watch Out For

  • āœ… Off-by-one errors: Be careful with boundary conditions in loops
  • āœ… Unoptimized comparisons: If detecting a sorted array, stop early to reduce complexity
  • āœ… Confusion between i and j: Ensure j shifts elements and i marks the next pivot
  • āœ… Inefficient for large inputs: Avoid for n > 1000; use QuickSort/MergeSort instead

šŸ“Œ Steps

  • āœ… Start iterating from index 1: Treat the first element as sorted
  • āœ… Set pivot element (key = A[i]): This is the element to be placed in the correct position
  • āœ… Initialize comparison pointer j = i - 1: Start from the last sorted element
  • āœ… Shift elements if necessary: While A[j] > key, shift A[j] to A[j+1] and decrement j
  • āœ… Insert key at the correct position: Key is placed at A[j+1] ensuring left side remains sorted
  • āœ… Repeat for all elements: Continue until the entire array is sorted

Insertion Sort (key at ith,jth,sorted, unsorted)

Insertion Sort Explanation